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ANALYSIS OF NONCONSTANT AREA COMBUSTION AND MIXING 


IN RAMJET AND ROCKET-RAMJET HYBRID ENGINES 


by Andrzej Dobrowolski 


Lewis Research Center 


SUMMARY 


A one-dimensional analysis of nonconstant area and nonconstant pressure burning 
and mixing processes is carried out using a prescribed pressure-area relation. The duct 
area ratio is advanced as an important parameter that affects the existence of flow solu­
tions and the loss or buildup of the stagnation pressure ratio of the process. The critical 
condition of thermal choking associated with Mach number of unity for constant area duct 
is shown to assume other Mach values for various nonconstant area ducts. The concepts 
evolved a re  applied to idealized supersonic combustion ramjets and rocket-ramjet hybrid 
engines. 

The nonconstant area combustion in a supersonic combustion ramjet results in a 
better specific impulse. Also, the separate mixing and burning, each with its appropriate 
duct configuration, leads to better performance than simultaneous mixing and burning in 
the case of the augmented rocket. 

INTRODUCTION 

The analysis of combustion o r  mixing processes in jet engines is usually confined to 
the cases of constant cross-sectional area o r  of constant gas pressure. References 1 to 
3 are representative of the scope of the work in this field performed under the previously 
mentioned constraints. The present analysis is an attempt to treat the cases going be­
yond these confining stipulations. The burners and mixers thus evolved are applied to 
supersonic combustion ramjets and rocket-ramjet hybrid engines. In order to preserve 
the overall view of the processes involved, a one-dimensional treatment is carried out 
that assumes ideal gases with specific heats that do not change with temperature, no 
frictional penalties, and hydrogen stoichiometric burning in the primary or  secondary 
flow. Complete mixing is assumed. 

First, the supersonic burning is dealt with under the conditions of a variable geome-
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t r y  duct, and the requirements for its optimum performance are outlined. A critical con­
dition, analogous to thermal choking at Mach 1 for the constant area duct, has to be re­
cognized: this condition occurs at a Mach number that is not necessarily unity. The 
burning which takes place with its Mach number decreasing toward the critical is refer­
red to as supercritical burning, while the burning which proceeds with its Mach number 
increasing toward the critical is referred to as subcritical burning. Thus, the concept of 
supersonic combustion may be replaced by the concept of supercritical combustion. 
There a r e  also duct configurations where the Mach number hardly changes due to burning, 
however extensive this burning is. 

Next the mixing is investigated by exploring (1) conditions for optimum buildup of the 
stagnation pressure of the secondary flow and (2) the option of a separate mixing and burn­
ing as compared to the simultaneous mixing with burning, The analyses a re  applied in 
the consideration of the performance of the ramjet and rocket-ramjet hybrid engines, 
and the ways of arriving at optimum duct configurations a r e  illustrated. The appendix 
contains the derivation of pertinent equations. 

SYMBOLS 

A cross-sectional area of duct -
*1 area ratio of secondary inlet over primary inlet, A 

1
/A 

j 

A* duct area ratio, exit over inlet 

net thrust __~ __CF thrust coefficient, 
(dynamic pressure)(A1 + A.)

3 

F function of Mach number, M4 71 +-

G function of Mach number and power index, E + yM 2 

G* function of Mach number and power index, G* = GE(y-l)/Y- - (E + yM 
2
)
4Y-l)/Y 

X y - 1  2 

g dimensional constant, 32.2 (lb mass 


h enthalpy, Btu/lb of gas 


IS specific impulse, sec 


J mechanical equivalent of heat, 778 f t  


m mass flow per second, lb mass/sec 


2 

1 + - M  
2 

- ft)/(lb - sec2) 

- lb mass/Btu 



-
ml entrainment ratio, m 

1
/m 

j 
M Mach number 

M 1 + -Y - 1 M 2  
N function of Mach number and power index, I f 2 

e + y M2 

P pressure, lb/ft 2 

q heat added, Btu/lb of air 

R gas constant, ft-lb/(lb mass)('R) 

S entropy, Btu/( lb)(OR) 

T absolute temperature, OR 

X parameter, 1 + ­
2 

V velocity, ft/sec 

a! parameter, sin a! = N / N ~  

Y ratio of specific heats, CP/Cu 

A ratio of stagnation enthalpy of secondary flow h; over stagnation enthalpy of pri­
mary flow ho

j 

E power index in L. Crocco power area - pressure relation, P2/P1 = (A2/A1)E/(1-E) 


P density, (lb mass)/ft 3 


Subscripts: 


av average 


b pertaining to burning 


c value of function at critical point 


j primary flow inlet 


m end of mixing 


0 referring to ambient conditions 


1 secondary flow inlet 


2 end of burning 


3 end of nozzle expansion 


3 
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Superscript: 

o stagnation condition 

PRESSURE - AREA RELATION 

In solving the duct flow problems of heat addition or mixing, the one-dimensional 
treatment of the three conservative equations in their integrated form is found very use­
ful for many flow regimes. A convenient assumption of the constancy of a certain quan­
tity throughout the flow (e. g., the pressure or duct cross-sectional area) is commonly 
made. This permits the evaluation of the wall force integral in the momentum equation 
and hence the retention of the simple integrated form. 

In order to enlarge the scope of the flow solutions, it would be desirable to have 
something else besides constant area or constant pressure cases. In general, there are 
many ways of expressing mathematically the variation of pressure with flow area. The 
one that has been chosen for this analysis because of its simplicity is due to L. Crocco 
(ref. 4) and is represented by 

r( 
n 
2 
0­.­c 
e 

4 

The pressure at  any axial station is related to flow 
area through the single parameter E. It is to be rec­
ognized that this arbitrary assumption as to the vari­
ation of the pressure inside the duct in no way condi­
tions the length of the duct. Therefore, the area of 
the burner or  mixer could be varied with length in such 
a manner that the existing finite rates of heat release 
or mixing yield the assumed variation of pressure 
with A. The convenience of this assumption becomes 
apparent not only by the ability to retain a simple inte­
grated form but by the inclusion of constant pressure 
case with E = 0 and constant area case with E = 1. 
Thus, the introduction of the E relation leads to some 

. I  
Area ratio, 

1 
A$A1 

10 generalization and extension of the two more common 
cases. 

figure 1. - Pressure-area relation, Figure 1presents the variation of the pressure 
ratio against the area ratio for several E ' S .  All pos-



sible variations are exhausted by positive and negative E'S. 

It is of interest to study this generalized process in more detail - at first in combus­
tion as an extrapolation of theknown Rayleigh process and later on in mixing. 

COMBUSTION 

The process of heat addition to  a flow in a duct of a constant cross-sectional area can 
be described in terms of the familiar Rayleigh curve in the h - S diagram shown below 
in sketch (a). 

The extreme entropy point on the curve is a critical point 
depicting a thermal choking condition. The upper branch of the 
curve is associated with a subsonic flow, which with heat addi-

- M ~ .1 tion has its Mach number increasing, and the lower branch is 

h associated with supersonic heat addition flow, with Mach num-
ber decreasing. The Mach number at the critical point is unity. 
Heat addition in excess of that required to achieve the critical 

S or  choking terminal Mach number will force an adjustment of 
(a) the flow. The initial Mach number will be changed to a magni­

tude that is consistent with the amount of heat input. 
It is fairly straightforward to show that the least stagnation pressure loss associated 

with a given amount of supersonic burning occurs in a process that reaches the critical 
condition. 

Generalized Rayleigh Process 

With the introduction of a nonconstant­
area combustion process of the type specified 
by the Crocco E relation, the enthalpy -
entropy diagram assumes the form shown in 
sketch (b). 

When one starts from the same initial 
value of the enthalpy, different E'S trace out 
different curvature lines. The upper branches 
of the lines delineate a subcritical process 
where Mach number increases (finally reach-

S ing the critical condition) because af heat ad­
(b) dition, and the lower branches correspond to 
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a supercritical process where the Mach number is decreasing. One of the curves is the 
familiar Rayleigh line with E = 1. Again, it  can be shown that the minimum stagnation 
pressure loss of the supercyitical 'burning for fixed heat addition and E occurs when the 
entrance M1 is chosen such that the critical condition is reached at the end. 

Critical Condition 

To obtain a complete description of the flow at the exit section of the burner when the 
initial Mach number M1, the initial stagnation enthalpy hi,  and the amount of heat added 
q are given, an energy balance equation is required which with the help of the other two 
conservation equations takes the form 

where 

N =  

2E + ~ M  

(The equations are described in the appendix. The equation numbers remain the same. ) 
Equation (7) may be solved directly for M2. When the function N is plotted against the 
Mach number M, figures 2(a) and (b) are obtained. In figure 2(a) for positive E'S, the 
highest points on the N curves define the critical conditions and result from the unique 
solutions to the previous heat addition equation. The critical Mach number is given by 

In the case of constant-area heat addition with E = 1, the critical Mach number is 1. 
For E < 1, this critical Mach number is subsonic, and for E > 1, the critical Mach num­
ber is supersonic. A positive E varying from 0 to y / (y  - 1) exhausts all possible values 
for  Mc from 0 to 00. In general, for a given value of E ,  two solutions or no solutions 
result as shown in sketch (c) when equation (7) is solved for M2. Moderate heat addition 
at a given M1 will yield subcritical and supercritical M2 corresponding to a new N2. At 
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Figure 2. -Variat ion of N with Mach number. 
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I N2, No solution 
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Two solutions 
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M 

(C) 

M 
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Supercritical 

(e) 

maximum heat addition, there is a single 
solution at a critical Ma. In the case of 
constant-area heat addition with E = 1, the 
one-solution situation corresponds to the 
thermally choked flow. Greater heat addi­
tion at a fixed M1 yields cases where no 
solution (and hence no steady flow) is pos­
sible. In the case of E = -y, the N curve 
increases rapidly in the neighborhood of 
M = 1, never quite reaching this asymptote. 
The maximum value of N2 in this case is 
dictated by stoichiometric fuel addition 
which maximizes q and hence N2/N1 (see 
eq. (7)). This condition corresponds to a 
practically constant Mach number heat ad­
dition (see sketch (d)). The duct configura­
tion is such that a flow at a Mach number 
approaching unity remains near unity after 
heat addition. From figure 2(b) it  is seen 
that with a negative E there is in general 
an asymptotic value of Mach number equal 
to iT that the flow cannot quite reach; 
however, this Mach number can be ap­
proached as close as desired whether on 
the subcritical or  the supercritical side. 
In sketch (e) the convergence or divergence 
of the duct is shown dependent on whether 
the flow is supercritical or subcritical and 
on the value of E. 

Stagnation Pressure Ratio 

In order to be able to judge the merit 
of one particular E (in other words, the 
advantage of one particular duct configur­
ation for the given initial flow conditions) 
and one particular heat addition, the in­
fluence of E on the stagnation pressure 
loss during burning has to be considered. 
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Figure 3. - Stagnation pressure ratio due to burning that changes flow from diffusion to critical Mach number. 
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Figure 4. - Stoichiometric hydrogen combustion stagnation pressure ratio as function of diffusion Mach number 
for flight Mach number of 20. 

Figure 3 shows the stagnation pressure ratio achieved during burning initiated at M I  
and ending at Mc. The stagnation pressure ratio of the process ending at any other Mach 
number is equal to the ratio of the pressure ratios corresponding to the initial and final 

P O  P O  
Mach numbers since 2= 2/ .. The relation between MI and M2 is found by ap-

P; P'1 

plying the N expression of the preceding section for a particular inlet stagnation enthalpy 
(function of flight Mach number) and heat addition (function of fuel type and fuel-air ratio). 
Figure 4 shows the stagnation pressure ratio for several E values and supercritical burn­
ing for the specific case of flight Mach number Mo = 20 and stoichiometric combustion 
of hydrogen. It is seen that given a series of E ducts with the supercritical flows at the 
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same initial Mach number MI and subjected to the same heat addition, the larger the E ,  

the smaller will be the stagnation pressure loss. From sketch (e), where the shapes of 
the ducts are noted, this would imply, for example, that a convergent duct is superior to  
a constant area duct for the same MI. 

Given a series of E ducts with the supercritical flows of the same stagnation enthalpy 
at different initial Mach numbers M1, such that each duct reaches a critical condition after 
the same heat addition, the larger the positive E ,  the larger will be the stagnation pres­
sure  loss (circled points in fig. 4). This implies that a constant area duct is superior to  
a convergent duct if a critical condition is reached in both ducts. (The shapes of duct are 
noted from sketch (e).) Thus diffusing (without losses) the flow sufficiently for the subse­
quent heat additiorl in the constant area duct to reach a critical condition will yield a 
better stagnation pressure ratio than direct use of a critically convergent duct. A diverg­
ing, critical, constant Mach number duct ( E  = -1.4) is still better. Best of all is the con­
stant pressure case ( E  = 0); however, heat addition in this case requires the flow to pass 
smoothly from supersonic to subsonic. This condition may not be achievable in practice. 

In general, the critical E for any given M1, for a given heat addition, and for ini­
tial stagnation enthalpy, that secures the attainment of the critical endpoint, can readily 
be identified by a direct calculation as derived in the appendix (see eq. (15)). 

Optimization of Inlet-Combustor Combination 
. 


In the design of an inlet-burner combination, the choice of E for the burner duct and 
the diffusion Mach number M1 will reflect directly on the overall stagnation pressure 
loss. For every E it is seen that the lowest permissible M1 minimizes the stagnation 
pressure loss due to heat addition. However, diffusion to low values of MI generally 
causes greater pressure losses in the inlet diffuser. Selection of the optimum E and 
M1 must hence consider the combined inlet and combustor. 

The performance of a supersonic combustion ramjet inlet is a function of the inlet 
type, the flight Mach number Mo, and the design diffusion Mach number M1. For illus­
trative purposes, figure 5 shows the pressure recovery of a representative supersonic 
combustion ramjet inlet. It is based on the evaluation of the stagnation pressure of the 
flow following three oblique shocks of equal static pressure rise. 

If one has an inlet whose performance is a function of the diffusion Mach number MI 
and a burner with a specific E ,  where the stagnation pressure ratio achieved is a func­
tion of M1, it is an easy matter for a given flight condition and heat addition to search 
and find an M1 that will result in an overall minimum stagnation pressure loss. 

Generally, the critical condition for burning is not reached. Diffusing the inducted 
flow of air to a very low Mach number M1 incurs a heavy penalty in stagnation pressure 
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Flight Mach I/
number, 

0 2 
Diffusion Mach number, .MI 

Figure 5. - Inlet pressure recovery of a representative supersonic combustion ramjet for 
three oblique shocks of equal strength. 

recovery; however, this makes it possible for the burning to take place near the criti­
cal point with its favorable stagnation pressure ratio. On the other hand, hardly diffus­
ing the oncoming flow, and thus allowing a high pressure recovery, compromises the 
stagnation pressure ratio of combustion that of nedessity occurs far off the critical point. 
Somewhere in between those two extreme conditions an optimum is usually found. 

If one uses the inlet data of figure 5 and the combustor data of figure 4, from which 
the stagnation pressure variation of hydrogen stoichiometric burning against M1 can be 
found, the effect of M1 on the overall pressure ratio can be shown as in figure 6 for 
M0 = 20 and a range of E.  

It is seen that the maximum stagnation pressure is reached for E = 2.0 and 
M1 = 8.2 under the condition of critical burning. Figure 7 shows the variations of the 
postcombustion Mach number M2 against the diffusion Mach number M1. The postcom­
bustion M2 hardly changes at large diffusion Mach numbers. 

Repeating the same procedure for a series of flight Mach numbers gives figure 8, 
where the optimum diffusion Mach numbers are noted. The signficance of the maximiza­
tion of the stagnation pressure ratios product for the evaluation of the optimum specific 
impulse is seen from equations (12) and (13) in the appendix. The specific impulse evalu­
ated at the ascertained M1's and E ' S ,  which change with Mo, is shown in figure 9 for 
the Mo range of 10 to 25. This is compared with the performance of the constant E 

engines. It is seen that modest, but significant, improvements are offered by the 
optimum-� case as compared to the constant-area case. It is noted that the improvement 
would be magnified had a less idealized expansion nozzle been assumed. 

The E of the optimum variable E ramjet is seen to vary from E = 0. 5 at 
Mo = 10 to E > 2 at Mo = 25. Figure 10 describes in detail the E and the associated 
area ratio variation of the optimum ramjet for the assumed conditions. From a divergent 
burner duct at lower Mach numbers Mo, the specified duct shape changes to a constant 
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Figure 6. -Overall stagnation pressure ratio due to induction aiaucombu-..on (hydrogen 
stoichiometric) for flight Mach number of 20. 
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Figure 7. - PostcombustionMach number as function of diffusion Mach 
number for flight Mach number of 20. 
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Figure 8. - Diffusion Mach number as function of flight Mach number. 
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Figure 9. - Ramjet specific impulse as function of flight Mach number. 
Hydrogen stoichiometric combustion; full expansion into ambient con­
ditions. 
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(a) Optimum power index. 

(b) Burner exit area to inlet area ratio. 

Figure 10. - Supercritical ramjet. 

area and later to a convergent one at 
higher flight Mach numbers. 

The indicated desirability of em­
ploying a convergent combustor at high 
flight Mach numbers should be tem­
pered by the following realization: as 
previously pointed out (fig. 4), best 
combustion performance is obtained if  
the Mach number entering the combus­
tor is near unity and heat is then added 
with an E of 1or less (corresponding 
to constant area or diverging area 
ducts), since this yields an exit Mach 

number near unity. However, diffusing to such a low MI causes excessive inlet losses 
according to the assumed schedule of figure 5, so that the optimum M1 is considerably 
higher. In order to retain the benefit of a low exit Mach number, the calculations then 
indicate the use of a converging duct (provided by a high E ) .  The duct thus performs the 
function of a diffuser, but without the pressure losses associated with the assumed inlet 
(since the present calculations consider combustor stagnation pressure losses that arise 
from heat addition only, no losses due to area changes as such a re  included). 

A more realistic inlet model than that of figure 5 would recognize the possibility of 
substantial internal contraction, yielding low MI, with little loss in pressure recovery. 
In this situation, it is possible that high E'S and converging combustors would not appear 
desirable. 

MIXING 

The preceding section considered the problem of heat addition to a single supersonic 
flow through a nonconstant area duct with applications to the supersonic combustion ram­
jet. The problem now considered is one of mixing two streams in a nonconstant area 
duct. This applies, for example, to submerging the exhaust of a rocket in a secondary 
flow of air in a ducted rocket arrangement, which results in an increase of specific im­
pulse due to an exchange of thermal and mechanical energy. A further benefit may be ob­
tained by a subsequent addition of heat to the mixed flow. 

The algebraic treatment of the three conservation equations, in their integrated form 
for the two flows undergoing complete mixing, leads to complex expressions for the rela­
tions between certain variables of interest because of the existence of so many parame­
ters.  One of the more tangible relations of mixing two flows is the change of magni­
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tude of the Mach number of the resultant mixed 
flow Mm, which is due to the changes of the 
secondary flow initial Mach number M1 (see 
sketch (f)). Once the character of those vari­
ations of Mm and the bounds on M1 for the 
existence of solutions that circumscribe the re­
gions of interest have been ascertained, it is of 
prime concern to seek to achieve as high a stag­
nation pressure buildup in the mixed flow as 
possible in those regions of validity. 

Bounds on the Solutions 

With a fixed primary flow, the relation between Mm and M1 will  depend on the 
mass ratio El, the stagnation enthalpies ratio A ,  the static pressure ratio P 

1
/P

j
, and 

the power index E when perfect mixing is assumed (see eq. (30)in the appendix). It is 
of interest to first  examine how the value of M1 influences the solution for M,. 

1 Given: 

.E= 1 

il=constant 

MC 
M1 = constant 

M.I = constant 

Given: 

.E= 1 

Mm ml = constant 
-

P17= constant 

Mj  = constant 
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Sketches (g) and (h) classify the interdependence of Mm, M, and A for a specific 
case of E = 1. The three regions of the diagrams correspond to three ranges (low, me­
dium, and high) of values for the stagnation enthalpy ratio A. In sketch (g), for the low 
and high ranges of A, the shaded regions denote the values of M1 for which there are 
no solutions for M,. Above this shaded region, values of M1 result in an Mm that is 
greater than Mc, while along the curves separating the two regions the values of M1 
result in an M, that is equal to M,. Below the shaded regions, values of M1 result 
in an M, which is less than M,, and again the bounding curve denotes values of M1 
that result in an M, equal to  M,. For the low range of A, as A increases the ex­
cluded range of M1 decreases, and finally vanishes at a point M1 = M, = M,. In 
sketch (h) it is seen that above the shaded region values of M, correspond to  values 
of MI which are greater than Mc, while below the shaded region values of M, cor­
respond to values of M1 which are less than Mc. The lines bounding the shaded region 
denote values of M, for which M1 is equal to M,. The excluded region occupies the 
medium range of A. 

The situation can be elucidated further by the familiar N function consideration as 
shown in sketch (i). The relation between N1 and Nm in terms of ml and A has to be 

solved to obtain Mm. The shaded portions of the 

No solution 
curve for N1 will produce various values for M, 

.~ until the limiting M1 values are reached, which re­
'111

7 Limiting sults in M, at the critical value. A value of M1 be-

N 
\\Nl _ _ _ _  tween the limiting points will produce no solution. 
YM1 This situation corresponds to the low range of A in 

I 

!Subcritical-$ mixing 'Super- sketch (g). 
critical 
mixing From a return to sketch (h) and an observation 

~. . -
M of the medium magnitude of A, it is noticed that a 
(i) large region of Mm values is excluded. This means 

that whatever value for M1 is prescribed, Mm can-
not assume a large spectrum of values. The corre-
sponding N function is shown in sketch (j). 

rLimiting M 1  Regardless of the value of M1, M, can be 
\Clm found only along the shaded portions of the curve. 

N The critical value for MI results in limiting Mm*s. 
It becomes obvious from the previous discussion 

that the diffusion Mach number M1 delivered by the 
inlet into the mixer is of critical importance, once 

M exit conditions have been prescribed, since certain 
(j) regions are excluded. Therefore, careful analysis 
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must be done for a fixed configuration flying a changing flight path. 
In order to evaluate overall engine performance, the stagnation pressure buildup 

achieved during mixing and its dependence on M1 must be considered. 

Stagnation Pressure Ratio 

With a fixed primary flow, the stagnation pressure ratio of the mixed flow, besides 
depending in large measure on the secondary flow Mach number M1, will depend also on 
the mass ratio ml, stagnation enthalpy ratio A, and E (eq. (35) in the appendix). A 
typical graphical representation of the stagnation pressure ratio PL/Py variation 

M1 for fixed values of the rest of the parameters is shown in sketch (k). 

Given: 

E = constant 
ml - constant 
A - constant 
M.1 = constant 

P1q = constant 

-Mm decreases 

,/ Mm > Mc 
Gap in  Mm 
values-., 

M, i n c r e a s e 4f i  
Mm inc ‘asesJ

11
1 

M1 

(k) 

N 


M 

The existence of two distinct 
curves is explained by the duality of 
the solution for the mixed flow Mach 
number Mm, which is obtained 
through the evaluation of the N func­
tion. The situation corresponds to 
the shaded region of sketch (h). 

The two parts of sketch (Q) show 
the solutions with their associated 
branches of the curves. These se­
lected values for Mm, like I and II 
that occur on the same sides of the 
curves as the given MI, are referred 
to as the regular solutions. The two 
on the other sides of the curves will 
be called crossover solutions. In the 
familiar constant-area duct cases 
( E  = l), where only a subsonic M1 is 
allowed, the solution I is elaborated 
and the solution 111, called a super­
sonic one, is often disregarded. 

A somewhat different stagnation 
pressure ratio diagram (shown in 
sketch (m)) may be arrived at by re­
collection of the remarks made con­
cerning the existence of the bounds 
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Figure 11. - Regular solutions (I  and 11) for stagnation pressure ratio at various 
stagnation enthalpy ratios. Mass ratio, 3; power index, 1.4 static pressure 
ratio, Pl/Pj = 1. (See sketch (h) for explanation of gap in curve at A = 0.10.) 
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on the solutions for the mixed flow. A spectrum of values of M1 does not give any solu­
tion for the mixed flow. This corresponds to the situation in sketch (g) (the shaded re­
gions). In figure 11 the regular solutions (I and n) for the stagnation pressure ratio at 
various A's have been plotted against M1 for El = 3 and E = 1.0.  The opposite effects 
of A in subcritical and supercritical mixing are noticed. The gap in the curve for 
A = 0.10 corresponds to the shaded region of sketch (g). 

It is seen that the selection of MI is of crucial importance for  the performance of 
the mixer, with the value of M1 nearest to unity always yielding the best stagnation pres­
sure  ratio. 

Figure 12 shows the variation of the stagnation pressure ratio of the solutions at con­
stant MI and A against E .  The mild increase of the parameter with the increase of E 

0 . 4  .8 1.2 1.6 2 0  
Pmer index, E 

Figure 12. -Variation of stagnation pressure 
ratio with power index. Mass ratio, 3; 
diffusion Mach number, 1.9 stagnation 
enthalpy ratio, A = 0. 77. 

is observed. Finally, in figure 13 the dependence of 
the maximum obtainable stagnation pressure ratio 
on the mass ratio is found. As to be expected, the 
smaller the amount of low-energy secondary air, 
the greater the increase in its stagnation pressure. 

Mixing and Burning 

Higher specific impulses may be possible i f  the 
function of momentum transfer mixing is separated 
from the function of combustion by provision of two 
separate chambers in the duct, one being the mixer 
and the other being the burner. Beside the advantage 
due to heat addition taking place at elevated pressure, 

I I I I r 
Maximum-__ 
regular 

__ solution ­
__ 	 I -

I1 
~ __ 

'\ __ . -_--_----___ 

1.0 1.4 1.8 2.2 2 6  3.0 3.4 
Mass ratio, R1 

Figure 13. - Dependenceof maximum stagnation pressure ratio on mass ratio. Pmer 
index, 1; stagnation enthalpy ratio, A = 0.77. 
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another advantage is the opening of scope for the greatest possible stagnation pressure 
buildup in the mixer and the least possible loss of i t  in the burner, or  an optimum com­
promise for the maximization of the product. It may be expected that the two separate 
chambers, each with i ts  own optimum geometry (in other words, two in number geome­
tries), show a drastic improvement over the constraint of one single geometry associated 
with a single-chamber concept. 

Ideally, the gross jet thrust per unit of primary mass flow of the engine is given by 

single chamber. Large exclusion areas are noted. 
A large spectrum of M1 values produces no solu­
tion. 

M1 To compare conclusively the virtues of "mix­
ing followed by burning" to "mixing while burn­
ing, *'an examination of the corresponding stagna­
tion pressure ratios is in order. 
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Figure 14. - Stagnation pressure ratios for "mixing followed by burning" and 
"mixing while burning". Mass ratio, 1; power index of mixing duct, 1.9 
flight Mach number, 10. 

TYPICAL ENGINE PERFORMANCE 

The separate mixer and burner systems need more examination in terms of the over­
all performance that includes an inlet and a nozzle. 

If for the nozzle a full expansion to the ambient pressure and a given mass ratio ml 
for the whole engine are assumed, it is necessary to correlate the three stagnation pres­
sure ratios achieved in induction, mixing, and stoichiometric hydrogen burning at any 
flight Mach number Mo. 

As seen in figure 5 (p. 11) the stagnation pressure ratio of induction is related di­
rectly to the diffusion Mach number MI. This variable in turn, as it has been seen in 
figure 11 (p. 18), affects the stagnation pressure ratio of mixing. 
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Figure 15. - Stagnation pressure ratios of induction, mixing, and burning. Mass ratio, 
3.0; power index of mixing duct, 1.0; power index of burner, critical; f l ight Mach num­
ber, 5; separate mixing and burning. 

.atio, 

I1 

cl 

0 2 6 10 12 14 16 
Thrust  coefficient, CF 

Figure 16. -Var ia t ion of specific impulse wi th  t h r u s t  coefficient. Flight
Mach number, 5; altitude, 70 OOO feet. 
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In figure 15, the stagnation pressure ratios of induction, mixing, and burning for the 
case of Mo = 5 and El = 3 are plotted against the diffusion Mach number M1 for a 
single E of mixing duct E, = 1. The primary jet is a stoichiometrically burnt hydrogen 
in oxygen, and the static-pressures ratio Pi/P 

j 
is unity. Whatever the resultant mixing 

Mach number M,, the critical burning follows, and its stagnation pressure ratio is also 
shown in figure 15. Repetition of the same procedure for several leads to the best 
obtainable overall pressure ratio that can be obtained for the selected case. 

r, Relative to its specific impulse and its thrust coefficient, the hybrid engine consid­
r, ered occupies an intermediate position between pure ramjet and a rocket. The ramjet 
k has a high specific impulse but a relatively low thrust-to-weight ratio, and the chemical 

rocket has substantially opposite characteristics. Where exactly a given hybrid engine 
is located in the wide spectrum of both mentioned parameters ought to be implied by the 
entrainment ratio. 

This spectrum, delineated by the ramjet and the rocket at  both extremes, is shown in 
figure 16, where the specific impulse is plotted against the thrust coefficient for the flight 

Mach number Mo = 5 and the altitude of 
70 000 feet. There is an order-of-magnitude 
variation in both propulsion characteristics, 
and the actual choice of the operating point 
will  ensue from the integration of the pro­
pulsion and the vehicle for any particular 
mission. 

In order to have some insight into the 
performance capability of a booster with a 
rocket-ramj et propulsion, the specific im­
pulse of the engines against the flight Mach 
number has been plotted in figure 17. The 
area enclosed by the curves of the ramjet and

\ the rocket maps out the capability of the hy­
brid engines. One of those engines with an 
entrainment ratio GI = 5, whose vehicle tra­

!OCl -rai et 
5) I
r jectory is shown in figure 18, has been plot-

\ 

tvbi (I%= 

ted. Its performance has been optimized at 

,Rocket 	
every flight Mach number by the method 
shown earlier for Mo = 5. Figure 19 shows 
the variation of some important parameters 

I5 

R

20 25 of this particular hybrid engine. It is seen 
Flight Mach number, Mo 

Figure 17. -Var ia t ion of specific impulses wi th  f l ight 
that a great measure of flexibility would be 

Mach number. required from the mixer and the burner. 
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Figure 18. - Flight path of rocket-ramjet hybrid. 
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Figure 19. -Variation of important rocket-ramjet parame­
ters with flight Mach number. 

24 




CONCLUDING REMARKS 

Based on the assumption of certain idealized conditions, the analysis of nonconstant 
area combustion and mixing has been carried out. The results of this analysis indicate 
that the duct shape is an important consideration in the evaluation of the performance of 
the burner or the mixer. The area ratio as a variable, besides broadening the scope of 

.C 
the possible flow solutions, leads to the choice of a suitable and optimum duct for any 
boundary conditions. 

Special attention has to be given to the magnitude of the diffusion Mach number of the 
t 
 secondary flow duct entrance. This Mach number affects greatly the performance of the 

duct. 
The nonconstant area combustion in a supersonic combustion ramjet results in a 

better specific impulse. Also, i f  the separation is feasible, the separate mixing and 
burning, each with its appropriate duct configuration, leads to better performance than 
simultaneous mixing and burning in the case of the augmented rocket. 

Admittedly, the varying flight conditions could in general demand a varying configura­
tion or many different fixed configurations. One of those configurations, however, will  do 
better for the whole flight spectrum than the rest  of them; thus, a fixed-geometry engine 
design is not precluded. The best geometry can be ascertained by the derived methods of 
this report. In general, the insight into nonconstant area processes afforded by this re­
port should be helpful in the design of actual engines. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 3, 1966, 
126-15-09-08-22. 
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APPENDIX - EQUATIONS OF BURNING AND MIXING 

Various relations a r e  derived, starting with the standard one-dimensional treatment 
of the three conservation equations as modified by Croccots device for the use of single-
flow heating. 

Heat Addition to a Single Flow 

The conservation of mass equation is (see sketch (0)) 

-MI m1 = m2 (1) 
-M2 

1 or since 

- -.
RT 

where 

it will assume the form 

if Y 1  = Y 2  


From the conservation of momentum, 


1(m2V2 - mlV1) = PIAl - P2A2 + (3)
g 

If it is assumed that the Crocco relation holds, 

26 




then 

J2P dA y2plfiy'(l-�) dA = (1 - E) (P2A2 - PIA1) 

Substituting this into equation (3) gives 

m V  m V
+ cP2A2 =g ' + e P 1 A 1  

g 

Since 

and 

the equation can be transformed into 

or 

P2A2G2 = PIAIGl 

where 

G = E  +yM2 

The conservation of energy equation is 
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0hl0 + q  = h2 (5) 

In equation (2) F can be replaced by GN where 

_. 
G 

E + y M2 

Then 

PIAIGINl-- P2*2G2N2 

which on account of equation (4) becomes 

+ e @  
Assuming hi/hy = Tg/TT and substituting equation (5) into it yield 

This equation is used to obtain M2, the postcombustion Mach number. The critical value 
of M2 is derived from dN/dM = 0, which from equation (6) becomes 

M t  = [ -- (Y - 1)l-l 
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Stagnation Pressure Ratio of Burning 

From equation (4), 

n 

which on the substitution of Crocco's relation 

becomes 

Also, 

Then, 

where 

X = l + -Y - l M 2  
2 

or 
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where 

GE
(Y-W Y* G =  

X 

Specific Impulse 

Velocity of the jet at point 3 after expansion follows from sketch (p) and equation (5): 

Since 

PO P O  PO P O  P O
xY/(Y-l) - 3 - 3 -

xO
Y/(Y-1) 1 2 3 

3 
p3 P; P; P; 

it follows that 

and then 
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r-


Is = v3 - vo 
fuel g-
air 

Critical Epsilon 

Substituting equation (8) into (6) gives the value of N function at the critical point: 

Deriving an explicit expression for M from equation (6) yields 

1 - 2cyN2 */l- 4N2cyf - ~ y s )  
2M =  


When the numerator and denominator a r e  multiplied by 

I ­

1 - 2 q N 2  ~f- 4N2eyf - ~ y y ) 

it follows that 

2M =  


2y2 N2 -Y( 2ii)- 2cyN2 F+ - 4N2ey (1- EY %)] 
Using this equation and equation (14) gives 
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-- 

- -  

or 

Multiplying both sides of the equation by If yields 

M2 Gc 

However, 

N2 -
M2XG,2 


NE M:X~G' 


which means that 

X 1 

2 2 4
xc N c M2 G,2 N c M  2 M c N  4 

Ne 


Hence, it follows that 
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-- 

-1 +-y - 1  

M2 ­

-1 +-y - 1  N2 
2 

or  

F2 

M4 - (1 f cos a!)2-
sin2 a 

C 

where 

Hence, 

Substituting M1 on the left hand side of equation (15) and 

on the right hand side will give the value of Mc. Then from equation (8) the critical E 

is obtained. 
Hence this equation makes it possible to obtain directly the duct configuration that 

will s'ecure a critical burning for a given M1, heat condition, and stagnation enthalpy. 
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Mixing Equations 

An algebraic treatment of the three conservation equations is now presented (see 
sketch (f), p. 15). 

First, from the conservation of mass, 

m1 + m . = m1 m 

In a manner similar to the way equation (2) was obtained, this can be put in the form 

Second, from the conservation of momentum, 

-1 ["Vm - mlV1 - m:V.] = PIA 1 + P.A.J - P"+lmJ J J A P dA (17)g 

If it is assumed that the Crocco relation holds, 

then 

dA = (1 - E )  [PmAm - P1(A1 + Aj)] (18) 

Substituting equation (18) into equation (17) gives 

1 
- [mmVm - mlVl - m.V.1 = PIAl + P.A.J - PIAO - cPmAm + EP (A JJ J J 1 1  + A.) + 
g 
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-- 

-- 

-- 

-- 

,..­

m V  m V  m.V. 
ePmAm + "- ' ' + , P A  +- J + ~ P A . + P . A- P A  

g g " g 1 1  i j  1 j  

m V  m -V 
- " + E P A  +- ~ + E PA. +P.A - P A. +EP.A. - EP.A. 

g " g 1 1  ~j 1 1  J J J J 

m V  m .V. 
- " + , P A  +- ' + EP.A. + (P. - P )A (1 - E) 

g " g J J J 1 j  

m V'-___'+EPIAl +-
m .V 

-
g 

m V  m .V 
- ' '+ E PA + A + E . P . A .  

g " g J J J 

where 

E . = � +  ' - - - ( ' - E )  

J ( 3 
Since V = M G and m = PAMyG/", the previous equation can be put in the 
following form: 

PmAm(. + y m M 2  = PIA1(E + y1M;) + PjAj(ej + yjMj2, 

or 

PmAmGm = PIAIGl + P.A.G. ('9)J J J 

where 

G = E  +yM2 

From this form of the conservation of momentum equation, 
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-- 

P. 
AIGl +A .G.4 1  

pm - p1 

p1 

but 

A, = ( A ~+ A.)A* . 
J m  

where 

* AmAm 	= 
AI + A j  

Hence, 

P: 


where 

P. - P. 
G.AIGl + AjGj AIGl +A J 

- p1 -- - p1 
Gav - A1 + A j  A1 + 1 

From Crocco's relation, 

P * E/( l -E)2= (AJ 
p1 

so 
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Hence 

and 

l - E  

A: = (z) 
Third, since 

and equation (19) can be put in the form 

F1 F. 
A FmP l A l - + P . A . 2 =  pm m  -

N1 Nj Nm 

one can substitute equation (24) into this equation with the result 

From conservation of energy, 

mIhl0 + m.h.0 = m hoJ J m m  

and this equation can be put into the form 
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-- 

- -
0 l + m l h ?  l + m l A

hm - J = . 

hy l + m l  l + m l  

Substituting equation (27) into equation (25)gives 

This is the fundamental equation for evaluation of mixing duct end Mach number Mm 
when the entrainment ratio 1’ stagnation enthalpy ratio of two flows A, and Mach num­
bers of both flows are given. By simple transformation, equation (28)can be put in the 
form (with the assumption y1 = ym = y.)

J 

2 


or  

N. N.
JA= 1 + -

where 

- - p1 F1 1ml = A1--­
’j Fj 6 
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Stagnation Pressure Ratio During Mixing 

The stagnation pressure ratio of the mixing process is now evaluated. 
From conservation of momentum equation (19) 

j JPmAmFm 	- 'lAlF1 + P.A.F.3 
-

b " N1 Nj 

. it follows that 

Solving equation (24) for PAF and substituting in the previous equation yield 

Now since 

-
Am A1+A j Am I + A ~ A :  

substituting equation (32) into equation (31) in turn results i n  

(33) 
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Crocco's relation gives 

From this 

and 


Substituting equation (34) into equation (33) results in 

Then the stagnation pressure ratio will be given by 

Hence, since N/F = 1/G, 
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I 

where, as in equation (ll), 

Conservation of energy is 

where 

Hence, 

* GE(y-l)/y
G =  

X 


Burning After Mixing 

mmhk + m1q = mm 2ho 

mm = m1 + m
j 

-
(ml + l ) h k  + m l q  = (ml + l ) h i  

During mixing, the conservation equation was 

J 0ho +mlhy = (ml + l)hm (37) 

Substituting equation (37) into equation (36)gives 

0 - 2h.J + mlhl +mlq = (ml + l)ho 

Then 



where 

m
h A = A + - q 

hp 

The velocity that can be developed at point 3 (see 
sketch (q)) will be given by 

Then gross jet thrust per unit primary mass flow is 

and 
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Burning While Mixing Process 

The primary jet here is stoichiometric and the fuel has to be supplied for the stoichi­
metric combustion of the entrained secondary flow. The mass of fuel is considered negli­
gible as compared to ml + m

j.
The conservation of energy equation can be stated as 

h0mlhl0 + m-h.0 + m1q = m2 2
1 1  

or 
- 0 0 ­mlhl + hj + mlq = (m1 + l)hg 

This is the same as equation (38); hence, the same equation for the jet thrust as shown 
in (40)is obtained. The specific impulse is 

The primary jet here is fuel-rich and constitutes the only source of fuel for the secondary 
flow. 
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